
STATISTICS WITH R PROGRAMMING Unit - IV

Creating Graphs :- R is profoundly used for its substantial techniques for graphical interpretation of

data of utmost importance of analysts. The primary styles are: dot plot, density plot (can be classified as

histograms and kernel), line graphs, bar graphs (stacked, grouped and simple), pie charts (3D,simple

and expounded), line graphs(3D,simple and expounded), box-plots(simple,notched and violin plots),

bag-plots and scatter-plots (simple with fit lines, scatter-plot matrices, high-density plots and 3-D plots).

The foundational function for creating graphs: plot(). This includes how to build a graph, from adding

lines and points to attaching a legend.

The Workhorse of R Base Graphics: The plot() Function

The plot() function forms the foundation for much of R’s base

graphing operations, serving as the vehicle for producing many

different kinds of graphs. plot() is a generic function, or a

placeholder for a family of functions. The function that is

actually called depends on the class of the object on which it is

called. The basic syntax to create a line chart in R is −

plot(v, type, col, xlab, ylab)

Following is the description of the parameters used −

 v is a vector containing the numeric values.

 type takes the value "p" to draw only the points, "l" to draw only the lines and "o" to draw

both points and lines.

 xlab is the label for x axis.

 ylab is the label for y axis.

 main is the Title of the chart.

 col is used to give colors to both the points and lines.

Examples of plot function

Define the cars vector with 5 values
cars <- c(1, 3, 6, 4, 9)

Graph the cars vector with all defaults
plot(cars)

The default argument of type is points

Define the cars vector with 5 values

cars <- c(1, 3, 6, 4, 9)

Graph cars using blue points with lines
plot(cars, type="o", col="blue")

Create a title with a red, bold/italic font

title(main="Autos",col.main="red", font.main=4)

Create the data for the chart.

v <- c(7,12,28,3,41)

Give the chart file a name.

png(file = "line_chart.jpg")

Plot the bar chart.
plot(v,type = "o")

Save the file.
dev.off()

Graphics:-Creating Graphs, The Workhorse of R Base Graphics, the plot() Function – Customizing

Graphs, Saving Graphs to Files.

STATISTICS WITH R PROGRAMMING Unit - IV

call plot() fucntion with an X vector and a Y vector, which are
interpreted as a set of pairs in the (x,y) plane.

plot(c(1,2,3), c(1,2,4))
This will cause a window to pop up, plotting the points (1,1), (2,2),

and (3,4), this is a very plain-Jane graph.

plot(c(-3,3), c(-1,5), type = "n", xlab="x", ylab="y")

#This draws axes labeled x and y. The horizontal (x) axis ranges from

−3 to 3. The vertical (y) axis ranges from −1 to 5. The argument

type="n" means that there is nothing in the graph itself.

Overlaying Plots:- If the plot() function is called many times,

the current graph will be plotted in the same window and the

previously existed graph will be replaced by the same. But in

order to have a comparision between the results this plot is

used. It is done by using the lines() and points() functions

which add lines and points to the respective existing plot.

x <- seq(-pi,pi,0.1)
plot(x,sin(x),main="overlaying Graphs",type="l",col="blue")
lines(x,cos(x),col="red")
legend('topleft',c("sin(x)","cos(x)"),fill=c("blue","red"))

Abline function:- This function simply draws a straight line,

with the function’s arguments treated as the intercept and

slope of the line.
x <- c(1,2,3)
y <- c(1,3,8)
plot(x,y,col=”red”,pch=”+”)
lmout <- lm(y ~ x)
abline(lmout)

After the call to plot(), the graph will simply show the three

points, along with the x- and y- axes with hash marks. The call

to abline() then adds a line to the current graph. Now, which

line is this?

As the result of the call to the linear-regression function lm() is

a class instance containing the slope and intercept of the fitted

line, as well as various other quantities that don’t concern us

here. We’ve assigned that class instance to lmout. The slope

and intercept will now be in lmout$coefficients.

 Some of the coloring functions in Graphs.

Function Usage Example

colors() Returns the built-in color

names which R knows about.

> col <- colors() [234]

> col
[1] "gray81"

STATISTICS WITH R PROGRAMMING Unit - IV

rgb() This function creates colors

corresponding to the given

intensities (between 0

and max) of the red, green and

blue primaries. It returns hex

code of the color

> rgb(1,0,1)

[1] "#FF00FF"

> rgb(33,64,123,max=255)

[1] "#21407B"

> rgb(0.3,0.7,0.5)
[1] "#4CB280"

cm.colors() Create a vector

of n contiguous colors.

> cm.colors(1)

[1] "#80FFFFFF"

rainbow() Create a vector

of n contiguous colors.

> rainbow(3)

[1] "#FF0000FF" "#00FF00FF" "#0000FFFF"

heat.colors() Create a vector

of n contiguous colors.

> heat.colors(1)

[1] "#FF0000FF"

terrain.colors() Create a vector

of n contiguous colors.

> terrain.colors(2)

[1] "#00A600FF" "#F2F2F2FF"

par() par can be used to set or query

graphical parameters.

Parameters can be set by

specifying them as arguments

to par in tag = value form, or

by passing them as a list of

tagged values.

>par(mfrow=c(1,2))

set the plotting area into a 1*2 array so 2 plots can
be used

https://www.youtube.com/watch?v=Z3V4Pbxeahg

Bar plot:- A bar chart represents data in rectangular bars with length of the bar proportional to the value

of the variable. R uses the function barplot() to create bar charts. R can draw both vertical and

horizontal bars in the bar chart. In bar chart each of the bars can be given different

colors.

A bar graph is a chart that uses bars to show comparisons between

categories of data. A bar graph will have two axes. One axis will describe the types of

categories being compared, and the other will have numerical values that represent

the values of the data. It does not matter which axis is which, but it will determine

what bar graph is shown. If the descriptions are on the horizontal axis, the bars will

be oriented vertically, and if the values are along the horizontal axis, the bars will be oriented

horizontally.

Syntax:- barplot(H, xlab, ylab, main, names.arg, col)

Following is the description of the parameters used −

 H is a vector or matrix containing numeric values used in bar chart.

 xlab is the label for x axis.

 ylab is the label for y axis.

 main is the title of the bar chart.

 names.arg is a vector of names appearing under each bar.

 col is used to give colors to the bars in the graph.

Types of Bar Plot:-

There are four types of bar diagrams, they are

1. Simple Bar plot

2. Multilple Bar plot

3. Sub-divided Bar plot or Component Bar plot

4. Deviation Bars

http://www.youtube.com/watch?v=Z3V4Pbxeahg

STATISTICS WITH R PROGRAMMING Unit - IV

Examples on bar plot

Simple Bar plot:- To compare two or more

independent variables. Each variable will relate to

a fixed value. The values are positive and

therefore, can be fixed to the horizontal value.

Simple Bar Plot
counts <- table(mtcars$gear)
barplot(counts, main="Car Distribution",
xlab="Number of Gears")

Simple Horizontal Bar Plot with Added Labels
counts <- table(mtcars$gear)
barplot(counts,

main="Car Distribution",
horiz=TRUE,
names.arg=c("3 Gears", "4 Gears", "5 Gears"))

Simple Bar Plot
counts <- table(mtcars$gear)
barplot(counts, main="Car Distribution",

xlab="Number of Gears",col=rainbow(5))

Grouped Bar Plot or multiple bar plot

Multiple bar chart is an extension of simple bar chart.
Grouped bars are used to represent related sets of data.

For example, imports and exports of a country together
are shown in multiple bar chart. Each bar in a group is
shaded or coloured differently for the sake

of distinction.

counts <- table(mtcars$vs, mtcars$gear)
barplot(counts, main="Car Distribution by Gears and VS",
xlab="Number of Gears", col=c("darkblue","red"),

legend = rownames(counts), beside=TRUE)

Sub-divided Bar Diagram:- This chart consists of

bars which are sub-divided into two or more

parts. This type of diagram shows the variation in

different components within each class as well as

between different classes. Sub-divided bar plot is

also known as component bar chart or staked chart.

Stacked Bar Plot with Colors and Legend
counts <- table(mtcars$vs, mtcars$gear)
barplot(counts, main="Car Distribution by Gears and VS",
xlab="Number of Gears", col=c("darkblue","red"),

legend = rownames(counts))

STATISTICS WITH R PROGRAMMING Unit - IV

Deviation Bar Plot
A graph displays a deviation relationship when it
features how one or more sets of quantitative values

differ from a reference set of values. The graph does
this by directly expressing the differences between two

sets of values

Ex.:Deviation bars are used to represent net
quantities - excess or deficit i.e. net profit, net loss, net
exports or imports, swings in voting etc. Such bars

have both positive and negative values. Positive values
lie above the base line and negative values lie below it.

cars <- c(12,-4,56,2,-12,45)
barplot(cars,col="light blue")

Advantages

 Show each data category in a frequency distribution

 Display relative numbers/proportions of multiple categories
 Summarize a large amount of data in a visual, easily intepretable form

 Make trends easier to highlight than tables do
 Estimates can be made quickly and accurately
 Permit visual guidance on accuracy and reasonableness of calculations
 Accessible to a wide audience

Disadvantages

 Often require additional explanation

 Fail to expose key assumptions, causes, impacts and patterns
 Can be easily manipulated to give false impressions

 Pie Chart :- A pie-chart is a representation of values as slices of a circle with different colors. The slices

are labeled and the numbers corresponding to each slice is also represented in the chart.

In pie chart, the circle is drawn with radii proportional to the square root of

the quantities to be represented because the area of a circle is given by 2pr2. The sectors

are coloured and shaded differently. To construct a pie chart, we draw a circle with some

suitable radius (square root of the total). The angles are calculated for each sector as

follows:

Angles for each sector = Component Part × 360o

Total

Syntax:- pie(x, labels, radius, main, col, clockwise)

Following is the description of the parameters used

 x is a vector containing the numeric values used in the pie chart.

 labels is used to give description to the slices.

 radius indicates the radius of the circle of the pie chart.(value between −1 and +1).

 main indicates the title of the chart.

 col indicates the color palette.

 clockwise is a logical value indicating if the slices are drawn clockwise or anti clockwise.

Examples of pie chart

Simple Pie Chart
slices <- c(10, 12,4, 16, 8)

lbls <- c("US", "UK", "Australia", "Germany", "France")
pie(slices, labels = lbls, main="Pie Chart of Countries")

 5

STATISTICS WITH R PROGRAMMING Unit - IV

Advantages

 Display relative proportions of multiple classes of data.

 Size of the circle can be made proportional to the total quantity it represents.

 Summarize a large data set in visual form.

 Be visually simpler than other types of graphs.

 Permit a visual check of the reasonableness or accuracy of calculations.

Disadvantages

 Do not easily reveal exact values

 Many pie charts may be needed to show changes over time

 Fail to reveal key assumptions, causes, effects, or patterns

 Be easily manipulated to yield false impressions

Histogram:- A histogram represents the frequencies of values of a variable bucketed into ranges.

Histogram is similar to bar chat but the difference is it groups the values into continuous ranges. Each

bar in histogram represents the height of the number of values present in that range.

R creates histogram using hist() function. This function takes a vector as an input and uses some

more parameters to plot histograms.

Syntax:- hist(v,main,xlab,xlim,ylim,breaks,col,border)

Following is the description of the parameters used −

 v is a vector containing numeric values used in histogram.

 main indicates title of the chart.

 col is used to set color of the bars.

 border is used to set border color of each bar.

 xlab is used to give description of x-axis.

 xlim is used to specify the range of values on the x-axis.

 ylim is used to specify the range of values on the y-axis.

 breaks is used to mention breakpoints between histogram cells

 counts: The count of values in a particular range.

 6

Pie Chart with Percentages
slices <- c(10, 12, 4, 16, 8)
lbls <- c("US", "UK", "Australia", "Germany", "France")
pct <- round(slices/sum(slices)*100)
lbls <- paste(lbls, pct) # add percents to labels
lbls <- paste(lbls,"%",sep="") # ad % to labels
pie(slices,labels = lbls, col=rainbow(length(lbls)), main="Pie Chart of
Countries")

3D Exploded Pie Chart

The pie3D() function in the plotrix package provides 3D

exploded pie charts.
library(plotrix)
slices <- c(10, 12, 4, 16, 8)
lbls <- c("US", "UK", "Australia", "Germany", "France")
pie3D(slices,labels=lbls,explode=0.1, main="Pie Chart of Countries ")

Pie Chart from data frame with Appended Sample Sizes
mytable <- table(iris$Species)
lbls <- paste(names(mytable), "\n", mytable, sep="")
pie(mytable, labels = lbls,

main="Pie Chart of Species\n (with sample sizes)")

STATISTICS WITH R PROGRAMMING Unit - IV

 mids: center point of multiple cells.

 density: cell density

 7

Examples of histogram

#Simple histogram
v <- c(9,13,21,8,36,22,12,41,31,33,19)
h <- hist(v,xlab = "Weight",col = "pink",border = "blue")
> h
$breaks
[1] 5 10 15 20 25 30 35 40 45

$counts
[1] 2 2 1 2 0 2 1 1

$density
[1] 0.03636364 0.03636364 0.01818182 0.03636364
0.00000000 0.03636364 0.01818182
[8] 0.01818182

$mids
[1] 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5

$xname
[1] "v"

$equidist
[1] TRUE

attr(,"class")
[1] "histogram"

To specify the range of values allowed in X axis

and Y axis, we can use the xlim and ylim

parameters.The width of each of the bar can be

decided by using breaks.

v <- c(9,13,31,8,31,22,12,31,35)
hist(v,xlab = "Weight",col = "light green",
border = "red", xlim = c(0,40), ylim = c(0,5),breaks = 5)

The following example utilizes the function

text() which add text to a plot and return

values to place the count above each cell.

h<-hist(mtcars$mpg, breaks=12, col="skyblue4")
text(h$mids,h$counts,labels = h$counts,adj=c(0.5,-0.5))

Break parameter tells the number of cells required in
the histogram plot.

x<- c(5,3,5,7,3,6,5)
hist(x,breaks = 4,col="violetred3", ,main="breaks=4")

hist(x,breaks = 10,col="slateblue3",main="breaks=10")

STATISTICS WITH R PROGRAMMING Unit - IV

Kernel Density Plots:- Kernal density plots are usually a much more effective way to view the

distribution of a variable. Create the plot using plot(density(x)) where x is a numeric vector.

Advantages

 Visually strong.

 Can compare to normal curve.

 Usually vertical axis is a frequence count of item falling in to each category.

 Disadvantages

 Cannot read exact values because data is grouped in categories.

 More difficult to compare two data sets.

 Use only with continuous data

Box plot:- Boxplots are a measure of how well distributed is the data in a data set. It divides the data

set into three quartiles. This graph represents the minimum, maximum, median, first quartile and

third quartile in the data set. It is also useful in comparing the distribution of data across data sets by

drawing boxplots for each of them. Boxplots are created in R by using the boxplot() function.

Syntax:- boxplot(x, data, notch, varwidth, names, main)

Following is the description of the parameters used −

 x is a vector or a formula.

 data is the data frame.

 notch is a logical value. Set as TRUE to draw a notch.

 varwidth is a logical value. Set as true to draw width of the box

proportionate to the sample size.

 names are the group labels which will be printed under each

boxplot.

 main is used to give a title to the graph.

Examples
x <- c(7,3,2,4,8)

boxplot(x,col="pink")

 8

Examples

Kernel Density Plot
v <- c(9,13,21,8,36,22,12,41,31,33,19)
returns the density data
d <- density(v)
plots the results
plot(d)

Filled Density Plot
d <- density(mtcars$mpg)
plot(d, main="Kernel Density of Miles Per Gallon")
polygon(d, col="steelblue2", border="tomato1")

STATISTICS WITH R PROGRAMMING Unit - IV

 Advantages:
 A box plot is a good way to summarize large amounts of data.

 It displays the range and distribution of data along a number line.

 9

> input <- mtcars[,c('mpg','cyl')]

> print(head(input))
mpg cyl

Mazda RX4 21.0 6
Mazda RX4 Wag 21.0 6
Datsun 710 22.8 4
Hornet 4 Drive 21.4 6
Hornet Sportabout 18.7 8
Valiant 18.1 6

boxplot(mpg ~ cyl, data = mtcars, xlab

="Number of Cylinder", ylab =
"Miles Per Gallon", main =
"Mileage Data",

col= c("green","royalblue","red"))

We can draw boxplot with notch to find out how the

medians of different data groups match with each other.
boxplot(mpg ~ cyl, data = mtcars,

xlab = "Number of Cylinders",
ylab = "Miles Per Gallon",
main = "Mileage Data",
notch = TRUE,
varwidth = TRUE,
col = c("green","yellow","purple"),
names = c("High","Medium","Low"))

a~z , where the value of z determines the value of a.

We can draw boxplot horizontally by making horizontal

as TRUE, the default value is FALSE.
x <- c(7,3,2,4,8)
boxplot(x,col="orange",horizontal = TRUE,border = "blue")

> b
$stats

[,1]

[1,] 2
[2,] 3

[3,] 4

[4,] 7
[5,] 8

 n: It includes number of used to draw box-

$n plot exculding the NA’s.

[1] 5  conf: It represents the lower and upper

extremes of notch and the out-value of
$conf

outliers.
[,1]

[1,] 1.17361  group: It represents same length vector as
[2,] 6.82639 out whose elements indicate to which

group the outlier belongs and
$out

 names: names vector for a group
numeric(0)
$group

numeric(0)

$names

[1] "1"

STATISTICS WITH R PROGRAMMING Unit - IV

 Box plots provide some indication of the data’s symmetry and skew-ness.

 Box plots show outliers.

Disadvantages

 Original data is not clearly shown in the box plot; also, mean and mode cannot be

identified in a box plot.

 Exact values not retained.

Customizing Graphs:-
a) Changing Character Sizes: (The cex Option) The cex (for character expand) function allows to expand or

shrink characters within a graph, which can be very useful. You can use it as a named parameter in

various graphing functions. For instance, you may wish to draw the text “abc” at some point, say (2.5,4),
in your graph but with a larger font,in order to call attention to this particular text.

Example:- text(2.5,4,"abc",cex = 1.5)

This prints the same text as in our earlier example but with characters 1.5 times the normal size.

b) Changing the Range of Axes: The xlim and ylim Options

The ranges on the x- and y-axes of a plot can be broader or narrower than the default. This

is especially useful while displaying several curves in the same graph. Axes can be modified by

specifying the xlim and/or ylim parameters in a call to plot() or points(). For example, ylim=c(0,90000)

specifies a range on the y-axis of 0 to 90,000.

c) Adding a Polygon: The polygon() Function

polygon() function is used to draw arbitrary polygonal objects. For example,

the following code draws the graph of the function f(x) = 1 − e−x and then adds a

rectangle that approximates the area under the curve from x = 1.2 to x = 1.4.
f <- function(x) return(1-exp(-x))
curve(f,0,2,col="blue")
polygon(c(1.2,1.4,1.4,1.2),c(0,0,f(1.3),f(1.3)),col="orange")

In the call to polygon() here, the first argument is the set of x- coordinates for the rectangle, and the

second argument specifies the y-coordinates. The third argument specifies that the rectangle in this case

should be shaded in solid gray.

As another example, we could use the density argument to fill the rectangle with striping. This call

specifies 10 lines per inch:
polygon(c(1.2,1.4,1.4,1.2),c(0,0,f(1.3),f(1.3)),density=10)

d) Smoothing Points: The lowess() and loess() Functions

Just plotting a cloud of points, connected or not, may give you

nothing but an uninformative mess. In many cases, it is better to smooth out the

data by fitting a nonparametric regression estimator such as lowess(). Let’s do that

for our test score data. We’ll plot the scores of exam 2 against those of exam 1:
testscore <- data.frame(c(4,6,8,5,5,8,7,7,7,7,5,5,5),c(8,9,4,6,4,4,2,7,3,9,9,6,4))
plot(testscore,xlab="Exam1",ylab="Exam2",col="red")
lines(lowess(testscore),col="blue")

Newer alternative to lowess() is loess(). The two functions are similar but have

different defaults and other options.

loess():-Fit a polynomial surface determined by one or more numerical predictors, using local fitting.

 10

STATISTICS WITH R PROGRAMMING Unit - IV

e) Graphing Explicit Functions

To plot the function g(t) = (t2 + 1)0.5 for t between 0 and 5.

You could use the following R code:
g <- function(t) { return (t^2+1)^0.5 }
x <- seq(0,5,length=10000)
y <- g(x)
plot(x,y,type="l")

But you could avoid some work by using the curve() function, which

basically uses the same method:
curve((x^2+1)^0.5,0,5)

If you are adding this curve to an existing plot, use the add argument:
curve((x^2+1)^0.5,0,5,add=T)

The optional argument n has the default value 101, meaning that the function will be evaluated at 101

equally spaced points in the specified range of x.

Saving Graphs:-The R graphics display can consist of various graphics devices. The default device is the

screen. Inorder to save a graph to a file, you must set up another device.

The graph can be saved in a variety of formats from the menu File -> Save As.

The graph can also be saved using one of the following functions.

Let’s go through the basics of R graphics devices first to introduce R graphics device concepts, and then

discuss a second approach that is much more direct and convenient.
> pdf("d12.pdf")

This opens the file d12.pdf. We now have two devices open, as we can confirm:
> dev.list()

X11 pdf
2 3

The screen is named X11 when R runs on Linux. (It’s named windows on Windows systems.) It is device

number 2 here. Our PDF file is device number 3. Our active device is the PDF file:
> dev.cur()

pdf
3

All graphics output will now go to this file instead of to the screen. But what if we wish to save what’s

already on the screen?

Saving the Displayed Graph:-One way to save the graph currently displayed on the screen is to reestablish

the screen as the current device and then copy it to the PDF device, which is 3 in our example, as
follows:

> dev.set(2)
X11
2
> dev.copy(which=3)
pdf
3

But actually, it is best to set up a PDF device as shown earlier and then rerun whatever analyses led to

the current screen. This is because the copy operation can result in distortions due to mismatches

between screen devices and file devices.

 11

Function Output to

pdf("mygraph.pdf") pdf file

win.metafile("mygraph.wmf") windows metafile

png("mygraph.png") png file

jpeg("mygraph.jpg") jpeg file

bmp("mygraph.bmp") bmp file

postscript("mygraph.ps") postscript file

STATISTICS WITH R PROGRAMMING Unit - IV

Closing an R Graphics Device:-Note that the PDF file we create is not usable until we close it, which we

do as follows:
> dev.set(3)

pdf
3

> dev.off()
X11
2

You can also close the device by exiting R, if you’re finished working with it. But in future versions of R,

this behavior may not exist, so it’s probably better to proactively close.

Example:
Create the data for the chart.
H <- c(7,12,28,3,41)

Give the chart file a name.
png(file = "barchart.png")

Plot the bar chart.

barplot(H,col=c("green","pink","skyblue"))

Save the file.
dev.off()

 12

	STATISTICS WITH R PROGRAMMING
	Unit - IV

	The Workhorse of R Base Graphics: The plot() Function
	plot(v, type, col, xlab, ylab)
	Syntax:- barplot(H, xlab, ylab, main, names.arg, col)

