
STATISTICS WITH R PROGRAMMING Unit - 3

Function

Explanation

Example

exp() Exponential function, base e > exp(2)

[1] 7.389056

log() Natural logarithm > log(10)

[1] 2.302585

log10() Logarithm base 10 > log10(10)

[1] 1

sqrt() Square root > sqrt(16)

[1] 4

abs() Absoluate value > abs(-12.4)

[1] 12.4

sin() Trig functions > sin(40)

[1] 0.7451132

cos() Trig functions > cos(12)

[1] 0.843854

min() Minimum value within a vector > x <- c(1,4,-423,8,-2,23)

> min(x)

[1] -423

max() Maximum value within a vector > x <- c(1,4,-423,8,-2,23)

> max(x)

[1] 23

which.min() Index of minimal element of the vector > x <- c(1,4,-423,8,-2,23)

> which.min(x)

[1] 3

which.max() Index of maximal element of the vector > x <- c(1,4,-423,8,-2,23)

> which.max(x)

[1] 6

pmin() Element-wise minima of several vectors > x <- c(4,-5,56)

> y <- c(3,2,7)

> pmin(x,y)

[1] 3 -5 7

pmax() Element-wise maxima of several vectors > x <- c(4,-5,56)

> y <- c(3,2,7)

> pmax(x,y)

[1] 4 2 56

sum() Sum of the elements of the vector > x

[1] 4 -5 56

> sum(x)
[1] 55

prod() Product of the elements of the vector > y <- 1:3

> prod(y)

[1] 6

cumsum() Cumulative sum of the elements of a

vector

> y

[1] 1 2 3

> cumsum(y)

STATISTICS WITH R PROGRAMMING Unit - 3

 [1] 1 3 6

cumprod() Cumulative product of the elements of a

vector

> z <- c(2,5,3)

> cumprod(z)

[1] 2 10 30

round() Round of the closest integer > round(12.4)

[1] 12

> round(2.43,digits=1)

[1] 2.4

floor() Round of the closest integer below > floor(12.4)

[1] 12

ceiling() Round of the closest integer above > ceiling(12.4)

[1] 13

factorial() Factorial function > factorial(5)

[1] 120

sin(), cos(), tan() and so on: Trig functions, the arguments will be in radians,asin(), acos(), atan() inverse

trignometry functions.
> tan(45*pi/180)

[1] 1

> a<-tan(45*pi/180)
> b<-atan(a)

> b
[1] 0.7853982

> b*180/pi
[1] 45

sum(): sum returns the sum of all the values present in its arguments.

sum(..., na.rm = FALSE)

... : numeric or complex or logical vectors.

na.rm : logical. Should missing values (including NaN) be removed?
Example1:-

>x

[1] 4 -5 56

> sum(x)

[1] 55

Example2:-
y <- c(2,3,NA,1)

>sum(y)
[1] NA

>sum(y, na.rm=TRUE)
[1] 6

prod(): prod returns the product of all the values present in its arguments.

prod(..., na.rm = FALSE)

... : numeric or complex or logical vectors.

na.rm : logical. Should missing values (including NaN) be removed?
Example1:-
> x <- c(1,3,5)
>prod(x)

[1] 15

Extended Example: Calculating a probability :

Example 2:-
> y

[1] 2 3 NA 1

>prod(y)

[1] NA

> prod(y, na.rm=TRUE)

[1] 6

Now we see how to find the probability that exactly one event occur: If three friends x, y, z appeared for

an examination x has17% chance of failure, y has 7% chance of failure, and Z has 26% chance of failure.

What is the probability that exactly one of them will fail in the exams?

P(X fails, but not others) = 0.17 * 0.93 * 0.74,

P(Y fails, but not others) = 0.83 * 0.07 * 0.74,

P(Z fails, but not others) = 0.83 * 0. 93 * 0.26.

The probability can be calculated using the prod() function. Let us assume that there are ‗n‘

independent events with the ith event having the pi probability of occurrence.

What is the probability of exactly one of these events occurring?

STATISTICS WITH R PROGRAMMING Unit - 3

Considering an example where the value of n is 3. The events are named A, B, and C. Then

we break down the computation as follows:

P(exactly one event occurs) = P(A and not B and not C) +

P(not A and B and not C) +

P(not A and not B and C)

P(A and not B and not C) would be pA (1 − pB) (1 − pC), and so on.

For general n, that is calculated as follows
n

 pi (1  p1)....(1  pi1)(1  pi1) ... (1  pn)
i1

(The ith term inside the sum is the probability that event i occurs and all the others do not occur.)

Here‘s code to compute this, with our probabilities pi contained in the vector p:

exactlyone <- function(p) {
notp <- 1 - p
tot <- 0.0
for (i in 1:length(p))

tot <- tot + p[i] * prod(notp[-i])
return(tot)

}

notp <- 1 – p :- creates a vector of all the ―not occur‖ probabilities 1 − pj , using recycling.

The expression notp[-i] computes the product of all the elements of notp, except the ith

Cumulative Sums and Products:-

A cumulative product is a sequence of partial products of a given sequence. For example,

the cumulative products of the sequence {a,b,c,.....} are a,ab,abc , Returns a vector whose elements are

the

cumulative product.
> x <- c(2,4,3)

> cumprod(x)
[1] 2 8 24

A cumulative sum is a sequence of partial sum of a given sequence. For example, the

cumulative sum of the sequence {a,b,c,.....} are a,ab,abc , Returns a vector whose elements are the

cumulative sum.
> x <- c(2,4,3)

> cumprod(x)
[1] 2 6 9

Minima and maxima:-

max() function computes the maximun value of a vector.

min() function computes the minimum value of a vector.

• x: number vector

• na.rm: whether NA should be removed, if not, NA will be returned

 max(.. , na.rm = FALSE)
> max(c(12,4,6,NA,34))
[1] NA
> max(c(12,4,6,NA,34),na.rm=FALSE)
[1] NA
> max(c(12,4,6,NA,34),na.rm=TRUE)
[1] 34
> x <- c(2,-4,6,-34)
> min(x[1],x[4])
[1] -34

 min(.. , na.rm = FALSE)
> min(c(12,4,6,NA,34))
[1] NA
> min(c(12,4,6,NA,34),na.rm=TRUE)

 3

STATISTICS WITH R PROGRAMMING Unit - 3

[1] 4
> min(c(12,4,6,NA,34),na.rm=FALSE)
[1] NA
> x <- c(2,-4,6,-34)
> max(x[2],x[3])
[1] 6

which.min() and which.max(): Index of the minimal element and maximal element of a vector.
>x <- c(1,4,-423,8,-2,23)
> which.min(x)

[1] 3
> which.max(x)

[1] 6

pmin() and pmax(): Element-wise minima and maxima of several vectors.

There is quite a difference between min() and pmin(). The former simply combines all its arguments into

one long vector and returns the minimum value in that vector. In contrast, if pmin() is applied to two or

more vectors, it returns a vector of the pair-wise minima, hence the name pmin.

The max() and pmax() functions act analogously to min() and pmin().

 pmax(..., na.rm = FALSE)
> x <- c(12,4,6,NA) pmin and pmax are the

> y <- c(2,34,56,1) ‘parallel’ versions of the

> pmax(x,y) min and max function,
[1] 12 34 56 NA meaning that they can take
> pmax(x,y,na.rm=TRUE) vector arguments and
[1] 12 34 56 1 return vectors back.

 pmin(..., na.rm = FALSE)
> x
[1] 12 4 NA 3
> y
[1] 1 2 3 4
> pmin(x,y)
[1] 1 2 NA 3
> pmin(x,y,na.rm=TRUE)
[1] 1 2 3 3

Function minimization/maximization can be done via nlm() and optim(). For example, let‘s find the

smallest value of f(x) = x2 − sin(x).
> nlm(function(x) return(x^2-sin(x)),8)

$minimum

[1] -0.2324656

$estimate

[1] 0.4501831

$gradient

[1] 4.024558e-09

$code

[1] 1

$iterations

[1] 5

Here, the minimum value was found to be approximately −0.23, occurring at x = 0.45. A

Newton- Raphson method (a technique from numerical analysis for approximating roots) is used,

running five iterations in this case. The second argument specifies the initial guess, which we set to be

8.

Calculus:- R also has some calculus capabilities, including symbolic differentiation and numerical

integration.
> D(expression(exp(x^2)),"x") # derivative

exp(x^2) * (2 * x)

 4

STATISTICS WITH R PROGRAMMING Unit - 3

> integrate(function(x) x^2,0,1)
0.3333333 with absolute error < 3.7e-15

d 2 2
1

Here, R reported ex  2xex and  x
2dx  0.33333333

dx 0

R packages for differential equations , for interfacing R with the Yacas symbolic math system

(ryacas), and for other calculus operations. These packages, and thousands of others, are available

from the Comprehensive R Archive Network (CRAN)

Functions Fir Statistical Distribution:- R has functions available for most of the famous statistical

distributions.

Prefix the name as follows:

• With d for the density or probability mass function (pmf)

• With p for the cumulative distribution function (cdf)

• With q for quantiles

• With r for random number generation

The rest of the name indicates the distribution. Table 8-1 lists some common statistical distribution

functions.

As an example, simulate 1,000 chi-square variates with 2 degrees of freedom and find their mean.

> mean(rchisq(1000,df=2))

[1] 1.938179

The r in rchisq specifies that we wish to generate random numbers— in this case, from the chi-

square distribution. As seen in this example, the first argument in the r-series functions is the number of

random variates to generate.

These functions also have arguments specific to the given distribution families. In our example,

we use the df argument for the chi-square family, indicating the number of degrees of freedom.

Let‘s also compute the 95th percentile of the chi-square distribution with two degrees of freedom:
> qchisq(0.95,2)
[1] 5.991465

Here, we used q to indicate quantile—in this case, the 0.95 quantile, or the 95th percentile. The first

argument in the d, p, and q series is actually a vector so that we can evaluate the density/pmf, cdf, or

quantile function at multiple points. Let‘s find both the 50th and 95th percentiles of the chi -square

distribution with 2 degrees of freedom.
qchisq(c(0.5,0.95),df=2)

[1] 1.386294 5.991465

Sorting:- Sorting is nothing but storage of data in sorted order, it can be in ascending or descending order.
> x <- c(12,4,25,4)
> sort(x)
[1] 4 4 12 25
> x
[1] 12 4 25 4

The vector x did not change actually as printed in the very last line of the code. In order to sort the

indexes as such, the order function is used in the following manner.
> order(x)
[1] 2 4 1 3

The console represents that there are two smallest values in vector x. The third smallest value being

x[1], and so on. The same function order can also be used along with indexing for sorting data frames.

This function can also be used to sort the characters as well as numeric values.

Another function which specifies the rank of every single element present in a vector is called rank()

 5

Distribution Density/pmf cdf Quantiles Random numbers

Normal dnorm() pnorm() qnorm() rnorm()

Chi square dchisq() pchisq() qchisq() rchisq()

Binomial dbinom() pbinom() qbinom() rbinom()

STATISTICS WITH R PROGRAMMING Unit - 3

> x
[1] 12 4 25 4

> rank(x)
[1] 3.0 1.5 4.0 1.5

The above console demonstrates that the value 12 lies at rank 4th, which means that the 3rd smallest
element

in x is 12. Now, 4 number appears two times in the vector x. So, the rank 1.5 is allocated to both the

numbers.

Example:- using order function on a dataframe.
> age <- c(12,4,34,14)
> names <- c("A","B","C","D")
> df <- data.frame(age,names)
> df

age names
1 12 A
2 4 B
3 34 C
4 14 D

> df[order(df$age),]
age names

2 4 B
1 12 A
4 14 D
3 34 C

Linear Algebra Operation on Vectors and Matrices:- The vector quantity can be multiplied to a scalar

quantity as demonstrated:
> x <- c(13,5,12,5)
> y <-2*x
> y

[1] 26 10 24 10

To compute the inner product (or dot product) of two vectors, use crossprod(),
> a<-c(3,7,2)
> b<-c(2,5,8)
> crossprod(a,b)

[,1]
[1,] 57

The function computed 3·2+7·5+ 2·8 = 57.

Note that the name crossprod() is a misnomer, as the function does not compute the vector cross product.

For matrix multiplications, the operator to use is %*% not *.
> c<-matrix(1:4,ncol=2)
> c

[,1] [,2]

[1,] 1 3

[2,] 2 4

> d<-matrix(rep(1,4),ncol=2)

> d

[,1] [,2]

[1,] 1 1

[2,] 1 1

> c%*%d
[,1] [,2]

[1,] 4 4

[2,] 6 6

The function solve() will solve systems of linear equations and even find matrix inverses. For example,
let‘s

solve this system:

x1 + x2 =2

 6

STATISTICS WITH R PROGRAMMING Unit - 3

−x1 + x2 =4

 1 1 x1   2

1


x
  

4


 1 2   
> a<-matrix(c(1,1,-1,1),ncol=2,byrow=T)
> b<-c(2,4)
> solve(a,b)
[1] -1 3
> solve(a)

[,1] [,2]
[1,] 0.5 -0.5
[2,] 0.5 0.5

In the second call solve(), we are not giving second argument so it computers inverse of the matrix.

Few other linear algebra functions are,

 t(): Matrix transpose

 qr(): QR decomposition

 chol(): Cholesky decomposition

 det(): Determinant

 eigen(): Eigen values/eigen vectors

 diag(): Extracts the diagonal of a square matrix (useful for obtaining variances from a

covariance matrix and for constructing a diagonal matrix).

 sweep(): Numerical analysis sweep operations

Note the versatile nature of diag(): If its argument is a matrix, it returns a vector, and vice versa. Also, if the

argument is a scalar, the function returns the identity matrix of the specified size.

> x<-matrix(1:9,ncol=3)
> diag(x)
[1] 1 5 9
> a<-c(1,2,3)
> diag(a)

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 2 0
[3,] 0 0 3
> diag(3)

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

The sweep() function is capable of fairly complex operations. As a simple example, let‘s take a 3 -by-3

matrix and add 1 to row 1, 4 to row 2, and 7 to row 3.

> a

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

> sweep(a,1,c(3,4,5),"+")

[,1] [,2] [,3]

[1,] 4 7 10

[2,] 6 9 12

[3,] 8 11 14

> sweep(a,2,c(3,4,5),"+")

[,1] [,2] [,3]

[1,] 4 8 12

[2,] 5 9 13

[3,] 6 10 14

 7

STATISTICS WITH R PROGRAMMING Unit - 3

The first two arguments to sweep() are like those of apply(): the array and the margin, which is 1 for

rows in this case. The fourth argument is a function to be applied, and the third is an argument to that

function.

Vector Cross Product:- Let‘s consider the issue of vector cross products. The definition is very simple:

The cross product of vectors (x1, x2, x3) and (y1, y2, y3) in three dimensional space is a new three-

dimensional vector, as (x2y3 − x3y2, −x1y3 + x3y1, x1y2 − x2y1)

This can be expressed compactly as the expansion along the top row of the determinant, Here, the

elements in the top row are merely placeholders.

    
 
 x1 x2 x3 
 y y y 
 1 2 3 

The point is that the cross product vector can be computed as a sum of subdeterminants. For

instance, the first component in Equation 8.1, x2y3 − x3y2, is easily seen to be the determinant

of the submatrix obtained by deleting the first row and first column.

 x2 x3 
 
 y2 y3 

Function to calculate cross product of vectors:

xprod <- function(x,y)

{

m <- rbind(rep(NA,3),x,y)

xp <- vector(length=3)

for (i in 1:3)

xp[i] <- -(-1)^i * det(m[2:3,-i])

return(xp)

}

> xprod(c(12,4,2),c(2,1,1))
[1] 2 -8 4

Set Operations:- R includes some handy set operations, including these:

1) union(x,y): The union of two sets is defined as the set of all the elements

that are members of set A, set B or both and is denoted by A  B read as
A union B.

A B {x | x A or xB}

Eg: A = {1,2,3,4,5,a,b} B = {a,b,c,d,e}

A  B = {1,2,3,4,5,a,b}  {a,b,c,d,e}

= {1,2,3,4,5,a,b,c,d,e}

2) intersect(x,y): The intersection of any two sets A and B is the set
containing of all the elements that belong to both A and B is denoted

by A  B read as A intersection B.

A  B {x | x A and x  B}

Eg: A = {1,2,3,4,5,a,b} B = {a,b,c,d,e}

A  B = {1,2,3,4,5,a,b}  {a,b,c,d,e}
= {a,b}

 8

STATISTICS WITH R PROGRAMMING Unit - 3

3) setdiff(x,y): The set difference of any two sets A and B is the set of

elements that belongs to A but not B. It is denoted by A-B and read

as

‗A difference B‘. A-B is also denoted by A|B or A~B. It is also called

the relative complement of B in A.

Eg: A = {1,2,3,4,5,6} B = {3,5,7,9}

A-B = {1,2,4,6}

B-A = {7,9}

4) setequal(x,y): Test for equality between x and y. If both x and y are equal it returns TRUE

otherwise returns FALSE

5) c %in% y: Membership, testing whether c is an element of the set y. It checks every

corresponding element of ‗c‘ with ‗y‘,if both elements are equal it returns TRUE else return FALSE.

6) choose(n,r): Number of possible subsets of size k chosen from a set of size n
Eg:- > choose(2,1)

[1] 2

choose() function computes the combination nCr.
n: n elements

r: r subset elements

...

nCr = n!/(r! * (n-r)!)

> x <- c(1,5,3) > setequal(x,y)
> y <- c(34,2,5) [1] FALSE
> union(x,y) >choose(5,2)
[1] 1 5 3 34 2 [1] 10

>intersect(x,y) >x %in% y
[1] 5 [1] FALSE TRUE FALSE
> setdiff(x,y) > 5 %in% y
[1] 1 3 [1] TRUE

? Code the symmetric difference between two sets— that is, all the elements belonging to exactly one of

the two operand sets. Because the symmetric difference between sets x and y consists exactly of those

elements in x but not y and vice versa.
function(a,b) >x
{ [1] 1 2 5

sdfxy <- setdiff(x,y) >y
sdfyx <- setdiff(y,x) [1] 5 1 8 9
return(union(sdfxy,sdfyx)) > symdiff(x,y)

} [1] 2 8 9

? Write a binary operand for determining whether one set u is a subset of another set v.

Hint: A bit of thought shows that this property is equivalent to the intersection of u and v being equal

to u.

"%subsetof%" <- function(u,v)

{

return(setequal(intersect(u,v),u))

}
> c(2,8) %subsetof% 1:10
[1] TRUE
> c(12,8) %subsetof% 1:10
[1] FALSE

combn() :-The function combn() generates combinations. Let‘s find the subsets of {1,2,3} of size 2.

> x <- combn(1:3,2)

> x

 9

STATISTICS WITH R PROGRAMMING Unit - 3

[,1] [,2] [,3]

[1,] 1 1 2

[2,] 2 3 3

> class(x)

[1] "matrix―

The results are in the columns of the output. We see that the subsets of {1,2,3} of size 2 are (1,2),

(1,3), and (2,3).

Input /output:- I/O plays a central role in most real-world applications of computers. Just consider an

ATM cash machine, which uses multiple I/O operations for both input—reading your card and

reading your typed-in cash request—and output—printing instructions on the screen, printing your

receipt, and most important, controlling the machine to output your money!

R is not the tool you would choose for running an ATM, but it features a highly versatile

array of I/O capabilities.

1.Accessing the keyboard and monitor:- R provides several functions for accesssing the keyboard and

monitor. Few of them are scan(), readline(), print(), and cat() functions.

Using the scan() Function:-You can use scan() to read in a vector or a list, from a file or the keyboard.

Suppose we have files named z1.txt, z2.txt.

z1.txt contains the following

123

4 5
6

z2.txt contains the follwing

abc

de f

g
> scan("z1.txt")

Read 4 items

[1] 123 4 5 6

> scan("z2.txt")

Error in scan("z2.txt") : scan() expected 'a real', got 'abc‘

> scan("z2.txt",what="")

Read 4 items

[1] "abc" "de" "f" "g"

The scan() function has an optional argument named what, which specifies mode, defaulting to

double mode. So, the non-numeric contents of the file z2 produced an error. But we then tried

again, with what="". This assigns a character string to what, indicating that we want character

mode.

By default, scan() assumes that the items of the vector are separated by whitespace, which

includes blanks, carriage return/line feeds, and horizontal tabs. You can use the optional sep

argument for other situations.

You can use scan() to read from the keyboard by specifying an empty string for the filename:
> scan("")

1: 43 23 65 12

5:

Read 4 items

[1] 43 23 65 12

> scan("",what="")

1: ―x" ―y" ―z" "srikanth" "Preethi" ―omer"

7:

Read 6 items

[1] ―x" ―y" ―z" "srikanth" "Preethi" ―omer"

 10

STATISTICS WITH R PROGRAMMING Unit - 3

readline() function:- If you want to read in a single line from the keyboard, readline() is very handy.

readline() is called with its optional prompt.
> readline()

Hai how are u

[1] "Hai how are u―

> readline("Enter your Name")

Enter your Name VIT

[1] ―VIT"

Printing to the Screen:- At the top level of interactive mode, you can print the value of a variable or

expression by simply typing the variable name or expression. This won‘t work if you need to print

from within the body of a function. In that case, you can use the print() function,

> x <- 1:3

> print(x^2)

[1] 1 4 9

print() is a generic function, so the actual function called will depend on the class of the object that is

printed. If, for example, the argument is of class "table", then the print.table() function will be called.

It‘s a little better to use cat() instead of print(), as the latter can print only one expression and its

output is numbered, which may be a nuisance. Compare the results of the functions:

> print("abc")

[1] "abc"

> cat("abc\ndef")

abc

def

Note that we needed to supply our own end-of-line character, "\n", in the call to cat(). Without it, our

next call would continue to write to the same line. The arguments to cat() will be printed out with

intervening spaces:
> x

[1] 1 2 3

> cat(x,"abc","de\n")

1 2 3 abc de

If you don‘t want the spaces, set sep to the empty string "", as follows:
> cat(x,"abc","de\n",sep="")

123abcde

Any string can be used for sep. Here, we use the newline character:

>cat(x,"abc","de\n",sep="\n")

1

2

3

abc

de

Set sep can be used with a vector of strings, like this:
> x <- c(5,12,13,8,88)

> cat(x,sep=c(".",".",".","\n","\n"))

5.12.13.8

88

2. Reading and Writing Files:- It includes reading data frames or matrices from files, working with text

files, accessing files on remote machines, and getting file and directory information.

Reading a Data Frame or Matrix from a File:- read.table() is used to read a data frame from the file.

> read.table("z1.txt",header=TRUE)

name nature

1 Hemant Obidient

2 Sowjanya Hardworking

 11

STATISTICS WITH R PROGRAMMING Unit - 3

3 Girija Friendly

4 Preethi Calm

scan() would not work here, as our data-frame has mixture of character and numeric data.We can

read a matrix using scan as
Mat<-matrix(scan(“abc.txt”), nrow=2, ncol=2, byrow=T)

We can do this generally by using read.table() as

read.matrix<-function(filename){
as.matrix(read.table(filename))

}

Reading a Text-File: readLines() is used to read in a text file, either one line at a time or in a single

operation. For example, suppose we have a file z1 with the following contents:

John 25

Mary 28

Jim 19

We can read the file all at once, like this:
>z1 <- readLines("z1")

>z1

[1] "John 25" "Mary 28" "Jim 19"

Since each line is treated as a string, the return value here is a vector of strings—that is, a vector of

character mode.

There is one vector element for each line read, thus three elements here.

Alternatively, we can read it in one line at a time. For this, we first need to create a connection, as

described next.

Introduction to Connections: Connection is R‘s term for a fundamental mechanism used in various

kinds of I/O operations. The connection is created by calling file(), url(), or one of several other R

functions. ?connection
> c <- file("z1","r")

> readLines(c,n=1)

[1] "John 25"

> readLines(c,n=1)

[1] "Mary 28"

> readLines(c,n=1)

[1] "Jim 19"

> readLines(c,n=1)

character(0)

We opened the connection, assigned the result to c, and then read the file one line at a time, as

specified by the argument n=1. When R encountered the end of file (EOF), it returned an empty

result.We needed to set up a connection so that R could keep track of our position in the file as

we read through it.

c <- file("z","r")
while(TRUE)
{ OUTPUT:

rl <- readLines(c,n=1) [1] "John 25"

if (length(rl) == 0) [1] "Mary 28"
{ [1] "Jim 19"

print("reached the end") [1] "reached the end"
break

} else print(rl)
}

Accessing files on remote machines via urls: Certain I/O functions, such as read.table() and scan(),

accept web URLs as arguments.
uci <- "http://archive.ics.uci.edu/ml/machine-learning-databases/echocardiogram/ echocardiogram. data”
> ecc <- read.csv(uci)

 12

http://archive.ics.uci.edu/ml/machine-learning-databases/echocardiogram/

STATISTICS WITH R PROGRAMMING Unit - 3

Writing to a file:The function write.table() works very much like read.table(), except that it writes a

data frame instead of reading one.
> kids <- c("Jack","Jill")
> ages <- c(12,10)
> d <- data.frame(kids,ages,stringsAsFactors=FALSE)
>d kids ages
1 Jack 12
2 Jill 10
> write.table(d,"kds.txt")

In the case of writing a matrix to a file, just state that you do not want row or column names, as

follows:
write.table(xc, "xcnew", row.names=FALSE, col.names=FALSE)

The function cat() can also be used to write to a file, one part at a time.
> cat("abc\n",file="u")
> cat("de\n",file="u",append=TRUE)

The first call to cat() creates the file u, consisting of one line with contents "abc". The second call

appends a second line. The file is automatically saved after each operation.

writeLines() function can also be used, the counterpart of readLines(). If you use a connection, you

must specify "w" to indicate you are writing to the file, not reading from it:
> c <- file("www","w")
> writeLines(c("abc","de","f"),c)
> close(c)

The file www will be created with these contents:

abc

de

f

 13

